What is software
SOFTWARE
Computer software or just software is a general term used to describe the role that computer programs, procedures and documentation play in a computer system.
The term includes:
§ Application software, such as word processors which perform productive tasks for users.
§ Firmware, which is software programmed resident to electrically programmable memory devices on board main boards or other types of integrated hardware carriers.
§ Middleware, which controls and co-ordinates distributed systems.
§ System software such as operating systems, which interface with hardware to provide the necessary services for application software.
§ Software testing is a domain dependent of development and programming. Software testing consists of various methods to test and declare a software product fit before it can be launched for use by either an individual or a group.
§ Test ware, which is an umbrella term or container term for all utilities and application software that serve in combination for testing a software package but not necessarily may optionally contribute to operational purposes. As such, test ware is not a standing configuration but merely a working environment for application software or subsets thereof.
Software includes things such as websites, programs or video games, that are coded by programming languages like C or C++.
"Software" is sometimes used in a broader context to mean anything which is not hardware but which is used with hardware, such as film, tapes and records.
Overview
Computer software is often regarded as anything but hardware, meaning that the "hard" are the parts that are tangible while the "soft" part is the intangible objects inside the computer. Software encompasses an extremely wide array of products and technologies developed using different techniques like programming languages, scripting languages, microcode, or an FPGA configuration. The types of software include web pages developed by technologies like HTML, PHP, Perl, JSP, ASP.NET, XML, and desktop applications like Open Office, Microsoft Word developed by technologies like C, C++, Java, C#, or Smalltalk. Software usually runs on an underlying software operating systems such as the Linux or Microsoft Windows. Software also includes video games and the logic systems of modern consumer devices such as automobiles, televisions, and toasters.
Computer software is so called to distinguish it from computer hardware, which encompasses the physical interconnections and devices required to store and execute (or run) the software. At the lowest level, software consists of a machine language specific to an individual processor. A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. Software is an ordered sequence of instructions for changing the state of the computer hardware in a particular sequence. It is usually written in high-level programming languages that are easier and more efficient for humans to use (closer to natural language) than machine language. High-level languages are compiled or interpreted into machine language object code. Software may also be written in an assembly language, essentially, a mnemonic representation of a machine language using a natural language alphabet. Assembly language must be assembled into object code via an assembler.
The term "software" was first used in this sense by John W. Turkeys in 1958. In computer science and software engineering, computer software is all computer programs. The theory that is the basis for most modern software was first proposed by Alan Turing in his 1935 essay Computable numbers with an application to the Entscheidungs problem.
Software Characteristics
§ Software is developed and engineered.
§ Software doesn't "wear-out".
§ Most software continues to be custom built.
Types of software
A layer structure showing where Operating System is located on generally used software systems on desktops
Practical computer systems divide software systems into three major classes. System software, programming software and application software, although the distinction is arbitrary, and often blurred.
System software
Systems software refers to the Operating System and all utility programs (like Compiler, Loader, Linker, and Debugger) that manage computer resources at a low level. [1] [2] [3] Operating systems, such as GNU, Microsoft Windows, Mac OS X or Linux, are prominent examples of system software.
System software is software that basically allows the parts of a computer to work together. Without the system software the computer cannot operate as a single unit. In contrast to system software, software that allows you to do things like create text documents, play games, listen to music, or surf the web is called application software.[4]
In general, application programs are software that enable the end-user to perform specific, productive tasks, such as word processing or image manipulation. System software performs tasks like transferring data from memory to disk, or rendering text onto a display device.
System software is not generally what a user would buy a computer for, instead, it is usually the basics of a computer which come built-in. Application software is the programs on the computer when the user buys it. These programs may include word processors and web browsers.
Types of system software
System software helps use the operating system and computer system. It includes diagnostic tools, compilers, servers, windowing systems, utilities, language translator, data communication programs, data management programs and more. The purpose of systems software is to insulate the applications programmer as much as possible from the details of the particular computer complex being used, especially memory and other hardware features, and such accessory devices as communications, printers, readers, displays, keyboards, etc.
Specific kinds of system software include:
§ Loading
§ Linkers
§ Desktop environment / Graphical user interface
§ Shell
§ BIOS
§
If system software is stored on non-volatile memory such as integrated circuits, it is usually termed firmware.
System software helps run the computer hardware and computer system. It includes a combination of the following:
§ servers
The purpose of systems software is to unburden the applications programmer from the often complex details of the particular computer being used, including such accessories as communications devices, printers, device readers, displays and keyboards, and also to partition the computer's resources such as memory and processor time in a safe and stable manner. Examples are- Windows XP, Linux, and Mac OS X.
Operating system
An operating system (OS) is an interface between hardware and user which is responsible for the management and coordination of activities and the sharing of the resources of a computer that acts as a host for computing applications run on the machine. As a host, one of the purposes of an operating system is to handle the details of the operation of the hardware. This relieves application programs from having to manage these details and makes it easier to write applications. Almost all computers (including handheld computers, desktop computers, supercomputers, video game consoles) as well as some robots, domestic appliances (dishwashers, washing machines), and portable media players use an operating system of some type.[1] Some of the oldest models may, however, use an embedded operating system that may be contained on a data storage device.
Operating systems offer a number of services to application programs and users. Applications access these services through application programming interfaces (APIs) or system calls. By invoking these interfaces, the application can request a service from the operating system, pass parameters, and receive the results of the operation. Users may also interact with the operating system with some kind of software user interface like typing commands by using command line interface (CLI) or using a graphical user interface (GUI, commonly pronounced “gooey”). For hand-held and desktop computers, the user interface is generally considered part of the operating system. On large multi-user systems like Unix and Unix-like systems, the user interface is generally implemented as an application program that runs outside the operating system. (Whether the user interface should be included as part of the operating system is a point of contention.)
While the most common operating systems are now found in cell phones and automobiles, other contemporary operating systems include BSD, Darwin (Mac OS X), Linux, SunOS (Solaris/Open Solaris), and Windows NT (XP/Vista/7). While servers generally run Unix or some Unix-like operating system, embedded system markets are split amongst several operating systems,[2][3] although the Microsoft Windows line of operating systems has almost 90% of the client PC market.
Mainframe
Through the 1950s, many major features were pioneered in the field of operating systems. The development of the IBM System/360 produced a family of mainframe computers available in widely differing capacities and price points, for which a single operating system OS/360 was planned (rather than developing ad-hoc programs for every individual model). This concept of a single OS spanning an entire product line was crucial for the success of System/360 and, in fact, IBM`s current mainframe operating systems are distant descendants of this original system; applications written for the OS/360 can still be run on modern machines. In the mid-70's, the MVS, the descendant of OS/360 offered the first[citation needed] implementation of using RAM as a transparent cache for data.
OS/360 also pioneered a number of concepts that, in some cases, are still not seen outside of the mainframe arena. For instance, in OS/360, when a program is started, the operating system keeps track of all of the system resources that are used including storage, locks, data files, and so on. When the process is terminated for any reason, all of these resources are re-claimed by the operating system. An alternative CP-67 system started a whole line of operating systems focused on the concept of virtual machines.
Control Data Corporation developed the SCOPE operating system in the 1960s, for batch processing. In cooperation with the University of Minnesota, the KRONOS and later the NOS operating systems were developed during the 1970s, which supported simultaneous batch and timesharing use. Like many commercial timesharing systems, its interface was an extension of the Dartmouth BASIC operating systems, one of the pioneering efforts in timesharing and programming languages. In the late 1970s, Control Data and the University of Illinois developed the PLATO operating system, which used plasma panel displays and long-distance time sharing networks. Plato was remarkably innovative for its time, featuring real-time chat, and multi-user graphical games. Burroughs Corporation introduced the B5000 in 1961 with the MCP, (Master Control Program) operating system. The B5000 was a stack machine designed to exclusively support high-level languages with no machine language or assembler, and indeed the MCP was the first OS to be written exclusively in a high-level language – ESPOL, a dialect of ALGOL. MCP also introduced many other ground-breaking innovations, such as being the first commercial implementation of virtual memory. During development of the AS400, IBM made an approach to Burroughs to licence MCP to run on the AS400 hardware. This proposal was declined by Burroughs management to protect its existing hardware production. MCP is still in use today in the Unisys ClearPath/MCP line of computers.
UNIVAC, the first commercial computer manufacturer, produced a series of EXEC operating systems. Like all early main-frame systems, this was a batch-oriented system that managed magnetic drums, disks, card readers and line printers. In the 1970s, UNIVAC produced the Real-Time Basic (RTB) system to support large-scale time sharing, also patterned after the Dartmouth BASIC system.
General Electric and MIT developed General Electric Comprehensive Operating Supervisor (GECOS), which introduced the concept of ringed security privilege levels. After acquisition by Honeywell it was renamed to General Comprehensive Operating System (GCOS).
Digital Equipment Corporation developed many operating systems for its various computer lines, including TOPS-10 and TOPS-20 time sharing systems for the 36-bit PDP-10 class systems. Prior to the widespread use of UNIX, TOPS-10 was a particularly popular system in universities, and in the early ARPANET community.
In the late 1960s through the late 1970s, several hardware capabilities evolved that allowed similar or ported software to run on more than one system. Early systems had utilized microprogramming to implement features on their systems in order to permit different underlying architecture to appear to be the same as others in a series. In fact most 360's after the 360/40 (except the 360/165 and 360/168) were micro programmed implementations. But soon other means of achieving application compatibility were proven to be more significant.
The enormous investment in software for these systems made since 1960s caused most of the original computer manufacturers to continue to develop compatible operating systems along with the hardware. The notable supported mainframe operating systems include:
- Burroughs MCP – B5000,1961 to Unisys Clearpath/MCP, present.
- IBM OS/360 – IBM System/360, 1966 to IBM z/OS, present.
- IBM CP-67 – IBM System/360, 1967 to IBM z/VM, present.
- UNIVAC EXEC 8 – UNIVAC 1108, 1967, to OS 2200 Unisys Clearpath Dorado, present.
Microcomputers
The first microcomputers did not have the capacity or need for the elaborate operating systems that had been developed for mainframes and minis; minimalistic operating systems were developed, often loaded from ROM and known as Monitors. One notable early disk-based operating system was CP/M, which was supported on many early microcomputers and was closely imitated in MS-DOS, which became wildly popular as the operating system chosen for the IBM PC (IBM's version of it was called IBM DOS or PC DOS), its successors making Microsoft. In the 80's Apple Computer Inc. (now Apple Inc.) abandoned its popular Apple II series of microcomputers to introduce the Apple Macintosh computer with an innovative Graphical User Interface (GUI) to the Mac OS.
The introduction of the Intel 80386 CPU chip with 32-bit architecture and paging capabilities, provided personal computers with the ability to run multitasking operating systems like those of earlier minicomputers and mainframes. Microsoft responded to this progress by hiring Dave Cutler, who had developed the VMS operating system for Digital Equipment Corporation. He would lead the development of the Windows NT operating system, which continues to serve as the basis for Microsoft's operating systems line. Steve Jobs, a co-founder of Apple Inc., started NeXT Computer Inc., which developed the Unix-like NEXTSTEP operating system. NEXTSTEP would later be acquired by Apple Inc. and used, along with code from FreeBSD as the core of Mac OS X.
Minix, an academic teaching tool which could be run on early PCs, would inspire another reimplementation of Unix, called Linux. Started by computer science student Linus Torvalds with cooperation from volunteers over the Internet, an operating system was developed with the tools from the GNU Project. The Berkeley Software Distribution, known as BSD, is the UNIX derivative distributed by the University of California, Berkeley, starting in the 1970s. Freely distributed and ported to many minicomputers, it eventually also gained a following for use on PCs, mainly as FreeBSD, NetBSD and OpenBSD.
Features
Program execution
The operating system acts as an interface between an application and the hardware. The user interacts with the hardware from "the other side". The operating system is a set of services which simplifies development of applications. Executing a program involves the creation of a process by the operating system. The kernel creates a process by assigning memory and other resources, establishing a priority for the process (in multi-tasking systems), loading program code into memory, and executing the program. The program then interacts with the user and/or other devices and performs its intended function.
Interrupts
Interrupts are central to operating systems, since they provide an efficient way for the operating system to interact with and react to its environment. The alternative—having the operating system "watch" the various sources of input for events (polling) that require action—can be found in older systems with very small stacks (50 or 60 bytes) but fairly unusual in modern systems with fairly large stacks. Interrupt-based programming is directly supported by most modern CPUs. Interrupts provide a computer with a way of automatically saving local register contexts, and running specific code in response to events. Even very basic computers support hardware interrupts, and allow the programmer to specify code which may be run when that event takes place.
When an interrupt is received, the computer's hardware automatically suspends whatever program is currently running, saves its status, and runs computer code previously associated with the interrupt; this is analogous to placing a bookmark in a book in response to a phone call. In modern operating systems, interrupts are handled by the operating system's kernel. Interrupts may come from either the computer's hardware or from the running program.
When a hardware device triggers an interrupt, the operating system's kernel decides how to deal with this event, generally by running some processing code. The amount of code being run depends on the priority of the interrupt (for example: a person usually responds to a smoke detector alarm before answering the phone). The processing of hardware interrupts is a task that is usually delegated to software called device drivers, which may be either part of the operating system's kernel, part of another program, or both. Device drivers may then relay information to a running program by various means.
A program may also trigger an interrupt to the operating system. If a program wishes to access hardware for example, it may interrupt the operating system's kernel, which causes control to be passed back to the kernel. The kernel will then process the request. If a program wishes additional resources (or wishes to shed resources) such as memory, it will trigger an interrupt to get the kernel's attention.
Protected mode and supervisor mode
Modern CPUs support something called dual mode operation. CPUs with this capability use two modes: protected mode and supervisor mode, which allow certain CPU functions to be controlled and affected only by the operating system kernel. Here, protected mode does not refer specifically to the 80286 (Intel's x86 16-bit microprocessor) CPU feature, although its protected mode is very similar to it. CPUs might have other modes similar to 80286 protected mode as well, such as the virtual 8086 mode of the 80386 (Intel's x86 32-bit microprocessor or i386).
However, the term is used here more generally in operating system theory to refer to all modes which limit the capabilities of programs running in that mode, providing things like virtual memory addressing and limiting access to hardware in a manner determined by a program running in supervisor mode. Similar modes have existed in supercomputers, minicomputers, and mainframes as they are essential to fully supporting UNIX-like multi-user operating systems.
When a computer first starts up, it is automatically running in supervisor mode. The first few programs to run on the computer, being the BIOS, boot loader and the operating system have unlimited access to hardware - and this is required because, by definition, initializing a protected environment can only be done outside of one. However, when the operating system passes control to another program, it can place the CPU into protected mode.
In protected mode, programs may have access to a more limited set of the CPU's instructions. A user program may leave protected mode only by triggering an interrupt, causing control to be passed back to the kernel. In this way the operating system can maintain exclusive control over things like access to hardware and memory.
The term "protected mode resource" generally refers to one or more CPU registers, which contain information that the running program isn't allowed to alter. An attempt to alter these resources generally causes a switch to supervisor mode, where the operating system can deal with the illegal operation the program was attempting (for example, by killing the program).
Memory management
Among other things, a multiprogramming operating system kernel must be responsible for managing all system memory which is currently in use by programs. This ensures that a program does not interfere with memory already used by another program. Since programs time share, each program must have independent access to memory.
Cooperative memory management, used by many early operating systems assumes that all programs make voluntary use of the kernel's memory manager, and do not exceed their allocated memory. This system of memory management is almost never seen anymore, since programs often contain bugs which can cause them to exceed their allocated memory. If a program fails it may cause memory used by one or more other programs to be affected or overwritten. Malicious programs, or viruses may purposefully alter another program's memory or may affect the operation of the operating system itself. With cooperative memory management it takes only one misbehaved program to crash the system.
Memory protection enables the kernel to limit a process' access to the computer's memory. Various methods of memory protection exist, including memory segmentation and paging. All methods require some level of hardware support (such as the 80286 MMU) which doesn't exist in all computers.
In both segmentation and paging, certain protected mode registers specify to the CPU what memory address it should allow a running program to access. Attempts to access other addresses will trigger an interrupt which will cause the CPU to re-enter supervisor mode, placing the kernel in charge. This is called a segmentation violation or Seg-V for short, and since it is both difficult to assign a meaningful result to such an operation, and because it is usually a sign of a misbehaving program, the kernel will generally resort to terminating the offending program, and will report the error.
Windows 3.1-Me had some level of memory protection, but programs could easily circumvent the need to use it. Under Windows 9x all MS-DOS applications ran in supervisor mode, giving them almost unlimited control over the computer. A general protection fault would be produced indicating a segmentation violation had occurred, however the system would often crash anyway.
In most Linux systems, part of the hard disk is reserved for virtual memory when the Operating system is being installed on the system. This part is known as swap space. Windows systems use a swap file instead of a partition.
Virtual memory
The use of virtual memory addressing (such as paging or segmentation) means that the kernel can choose what memory each program may use at any given time, allowing the operating system to use the same memory locations for multiple tasks.
If a program tries to access memory that isn't in its current range of accessible memory, but nonetheless has been allocated to it, the kernel will be interrupted in the same way as it would if the program were to exceed its allocated memory. (See section on memory management.) Under UNIX this kind of interrupt is referred to as a page fault.
When the kernel detects a page fault it will generally adjust the virtual memory range of the program which triggered it, granting it access to the memory requested. This gives the kernel discretionary power over where a particular application's memory is stored, or even whether or not it has actually been allocated yet.
In modern operating systems, memory which is accessed less frequently can be temporarily stored on disk or other media to make that space available for use by other programs. This is called swapping, as an area of memory can be used by multiple programs, and what that memory area contains can be swapped or exchanged on demand.
Further information: Page fault
Multitasking
Multitasking refers to the running of multiple independent computer programs on the same computer; giving the appearance that it is performing the tasks at the same time. Since most computers can do at most one or two things at one time, this is generally done via time-sharing, which means that each program uses a share of the computer's time to execute.
An operating system kernel contains a piece of software called a scheduler which determines how much time each program will spend executing, and in which order execution control should be passed to programs. Control is passed to a process by the kernel, which allows the program access to the CPU and memory. Later, control is returned to the kernel through some mechanism, so that another program may be allowed to use the CPU. This so-called passing of control between the kernel and applications is called a context switch.
An early model which governed the allocation of time to programs was called cooperative multitasking. In this model, when control is passed to a program by the kernel, it may execute for as long as it wants before explicitly returning control to the kernel. This means that a malicious or malfunctioning program may not only prevent any other programs from using the CPU, but it can hang the entire system if it enters an infinite loop.
The philosophy governing preemptive multitasking is that of ensuring that all programs are given regular time on the CPU. This implies that all programs must be limited in how much time they are allowed to spend on the CPU without being interrupted. To accomplish this, modern operating system kernels make use of a timed interrupt. A protected mode timer is set by the kernel which triggers a return to supervisor mode after the specified time has elapsed. (See above sections on Interrupts and Dual Mode Operation.)
On many single user operating systems cooperative multitasking is perfectly adequate, as home computers generally run a small number of well tested programs. Windows NT was the first version of Microsoft Windows which enforced preemptive multitasking, but it didn't reach the home user market until Windows XP, (since Windows NT was targeted at professionals.)
Kernel preemption
In recent years, concerns have arisen because of long latencies associated with some kernel run-times, sometimes on the order of 100ms or more in systems with monolithic kernels. These latencies often produce noticeable slowness in desktop systems, and can prevent operating systems from performing time-sensitive operations such as audio recording and some communications.[4]
Modern operating systems extend the concepts of application preemption to device drivers and kernel code, so that the operating system has preemptive control over internal run-times as well. Under Windows Vista, the introduction of the Windows Display Driver Model (WDDM) accomplishes this for display drivers, and in Linux, the preemptable kernel model introduced in version 2.6 allows all device drivers and some other parts of kernel code to take advantage of preemptive multi-tasking.
Under Windows prior to Windows Vista and Linux prior to version 2.6 all driver execution was co-operative, meaning that if a driver entered an infinite loop it would freeze the system.
Disk access and file systems
Access to data stored on disks is a central feature of all operating systems. Computers store data on disks using files, which are structured in specific ways in order to allow for faster access, higher reliability, and to make better use out of the drive's available space. The specific way in which files are stored on a disk is called a file system, and enables files to have names and attributes. It also allows them to be stored in a hierarchy of directories or folders arranged in a directory tree.
Early operating systems generally supported a single type of disk drive and only one kind of file system. Early file systems were limited in their capacity, speed, and in the kinds of file names and directory structures they could use. These limitations often reflected limitations in the operating systems they were designed for, making it very difficult for an operating system to support more than one file system.
While many simpler operating systems support a limited range of options for accessing storage systems, operating systems like UNIX and Linux support a technology known as a virtual file system or VFS. An operating system like UNIX supports a wide array of storage devices, regardless of their design or file systems to be accessed through a common application programming interface (API). This makes it unnecessary for programs to have any knowledge about the device they are accessing. A VFS allows the operating system to provide programs with access to an unlimited number of devices with an infinite variety of file systems installed on them through the use of specific device drivers and file system drivers.
A connected storage device such as a hard drive is accessed through a device driver. The device driver understands the specific language of the drive and is able to translate that language into a standard language used by the operating system to access all disk drives. On UNIX, this is the language of block devices.
When the kernel has an appropriate device driver in place, it can then access the contents of the disk drive in raw format, which may contain one or more file systems. A file system driver is used to translate the commands used to access each specific file system into a standard set of commands that the operating system can use to talk to all file systems. Programs can then deal with these files systems on the basis of filenames, and directories/folders, contained within a hierarchical structure. They can create, delete, open, and close files, as well as gather various information about them, including access permissions, size, and free space, and creation and modification dates.
Various differences between file systems make supporting all file systems difficult. Allowed characters in file names, case sensitivity, and the presence of various kinds of file attributes makes the implementation of a single interface for every file system a daunting task. Operating systems tend to recommend using (and so support natively) file systems specifically designed for them; for example, NTFS in Windows and ext3 and ReiserFS in Linux. However, in practice, third party drives are usually available to give support for the most widely used file systems in most general-purpose operating systems (for example, NTFS is available in Linux through NTFS-3g, and ext2/3 and ReiserFS are available in Windows through FS-driver and rfstool).
Device drivers
A device driver is a specific type of computer software developed to allow interaction with hardware devices. Typically this constitutes an interface for communicating with the device, through the specific computer bus or communications subsystem that the hardware is connected to, providing commands to and/or receiving data from the device, and on the other end, the requisite interfaces to the operating system and software applications. It is a specialized hardware-dependent computer program which is also operating system specific that enables another program, typically an operating system or applications software package or computer program running under the operating system kernel, to interact transparently with a hardware device, and usually provides the requisite interrupt handling necessary for any necessary asynchronous time-dependent hardware interfacing needs.
The key design goal of device drivers is abstraction. Every model of hardware (even within the same class of device) is different. Newer models also are released by manufacturers that provide more reliable or better performance and these newer models are often controlled differently. Computers and their operating systems cannot be expected to know how to control every device, both now and in the future. To solve this problem, OSes essentially dictate how every type of device should be controlled. The function of the device driver is then to translate these OS mandated function calls into device specific calls. In theory a new device, which is controlled in a new manner, should function correctly if a suitable driver is available. This new driver will ensure that the device appears to operate as usual from the operating systems' point of view.
Networking
Currently most operating systems support a variety of networking protocols, hardware, and applications for using them. This means that computers running dissimilar operating systems can participate in a common network for sharing resources such as computing, files, printers, and scanners using either wired or wireless connections. Networks can essentially allow a computer's operating system to access the resources of a remote computer to support the same functions as it could if those resources were connected directly to the local computer. This includes everything from simple communication, to using networked file systems or even sharing another computer's graphics or sound hardware. Some network services allow the resources of a computer to be accessed transparently, such as SSH which allows networked users direct access to a computer's command line interface.
Client/server networking involves a program on a computer somewhere which connects via a network to another computer, called a server. Servers, usually running UNIX or Linux, offer (or host) various services to other network computers and users. These services are usually provided through ports or numbered access points beyond the server's network address. Each port number is usually associated with a maximum of one running program, which is responsible for handling requests to that port. A daemon, being a user program, can in turn access the local hardware resources of that computer by passing requests to the operating system kernel.
Many operating systems support one or more vendor-specific or open networking protocols as well, for example, SNA on IBM systems, DECnet on systems from Digital Equipment Corporation, and Microsoft-specific protocols (SMB) on Windows. Specific protocols for specific tasks may also be supported such as NFS for file access. Protocols like ESound, or esd can be easily extended over the network to provide sound from local applications, on a remote system's sound hardware.
Security
A computer being secure depends on a number of technologies working properly. A modern operating system provides access to a number of resources, which are available to software running on the system, and to external devices like networks via the kernel.
The operating system must be capable of distinguishing between requests which should be allowed to be processed, and others which should not be processed. While some systems may simply distinguish between "privileged" and "non-privileged", systems commonly have a form of requester identity, such as a user name. To establish identity there may be a process of authentication. Often a username must be quoted, and each username may have a password. Other methods of authentication, such as magnetic cards or biometric data, might be used instead. In some cases, especially connections from the network, resources may be accessed with no authentication at all (such as reading files over a network share). Also covered by the concept of requester identity is authorization; the particular services and resources accessible by the requester once logged into a system are tied to either the requester's user account or to the variously configured groups of users to which the requester belongs.
In addition to the allow/disallow model of security, a system with a high level of security will also offer auditing options. These would allow tracking of requests for access to resources (such as, "who has been reading this file?"). Internal security, or security from an already running program is only possible if all possibly harmful requests must be carried out through interrupts to the operating system kernel. If programs can directly access hardware and resources, they cannot be secured.
External security involves a request from outside the computer, such as a login at a connected console or some kind of network connection. External requests are often passed through device drivers to the operating system's kernel, where they can be passed onto applications, or carried out directly. Security of operating systems has long been a concern because of highly sensitive data held on computers, both of a commercial and military nature. The United States Government Department of Defense (DoD) created the Trusted Computer System Evaluation Criteria (TCSEC) which is a standard that sets basic requirements for assessing the effectiveness of security. This became of vital importance to operating system makers, because the TCSEC was used to evaluate, classify and select computer systems being considered for the processing, storage and retrieval of sensitive or classified information.
Network services include offerings such as file sharing, print services, email, web sites, and file transfer protocols (FTP), most of which can have compromised security. At the front line of security are hardware devices known as firewalls or intrusion detection/prevention systems. At the operating system level, there are a number of software firewalls available, as well as intrusion detection/prevention systems. Most modern operating systems include a software firewall, which is enabled by default. A software firewall can be configured to allow or deny network traffic to or from a service or application running on the operating system. Therefore, one can install and be running an insecure service, such as Telnet or FTP, and not have to be threatened by a security breach because the firewall would deny all traffic trying to connect to the service on that port.
An alternative strategy, and the only sandbox strategy available in systems that do not meet the Popek and Goldberg virtualization requirements, is the operating system not running user programs as native code, but instead either emulates a processor or provides a host for a p-code based system such as Java.
Internal security is especially relevant for multi-user systems; it allows each user of the system to have private files that the other users cannot tamper with or read. Internal security is also vital if auditing is to be of any use, since a program can potentially bypass the operating system, inclusive of bypassing auditing.
Example: Microsoft Windows
While the Windows 9x series offered the option of having profiles for multiple users, they had no concept of access privileges, and did not allow concurrent access; and so were not true multi-user operating systems. In addition, they implemented only partial memory protection. They were accordingly widely criticized for lack of security.
The Windows NT series of operating systems, by contrast, are true multi-user, and implement absolute memory protection. However, a lot of the advantages of being a true multi-user operating system were nullified by the fact that, prior to Windows Vista, the first user account created during the setup process was an administrator account, which was also the default for new accounts. Though Windows XP did have limited accounts, the majority of home users did not change to an account type with fewer rights – partially due to the number of programs which unnecessarily required administrator rights – and so most home users ran as administrator all the time.
Windows Vista changes this by introducing a privilege elevation system called User Account Control. When logging in as a standard user, a logon session is created and a token containing only the most basic privileges is assigned. In this way, the new logon session is incapable of making changes that would affect the entire system. When logging in as a user in the Administrators group, two separate tokens are assigned. The first token contains all privileges typically awarded to an administrator, and the second is a restricted token similar to what a standard user would receive. User applications, including the Windows Shell, are then started with the restricted token, resulting in a reduced privilege environment even under an Administrator account. When an application requests higher privileges or "Run as administrator" is clicked, UAC will prompt for confirmation and, if consent is given (including administrator credentials if the account requesting the elevation is not a member of the administrators group), start the process using the unrestricted token.[6]
Example: Linux/Unix
Linux and UNIX both have two tier securities, which limits any system-wide changes to the root user, a special user account on all UNIX-like systems. While the root user has virtually unlimited permission to effect system changes, programs running as a regular user are limited in where they can save files, what hardware they can access, etc. In many systems, a user's memory usage, their selection of available programs, their total disk usage or quota, available range of programs' priority settings, and other functions can also be locked down. This provides the user with plenty of freedom to do what needs to be done, without being able to put any part of the system in jeopardy (barring accidental triggering of system-level bugs) or make sweeping, system-wide changes. The user's settings are stored in an area of the computer's file system called the user's home directory, which is also provided as a location where the user may store their work, a concept later adopted by Windows as the 'My Documents' folder. Should a user have to install software outside of his home directory or make system-wide changes, they must become the root user temporarily, usually with the su or sudo command, which is answered with the computer's root password when prompted. Some systems (such as Ubuntu and its derivatives) are configured by default to allow select users to run programs as the root user via the sudo command, using the user's own password for authentication instead of the system's root password. One is sometimes said to "go root" or "drop to root" when elevating oneself to root access.
For more information on the differences between the Linux su/sudo approach and Vista's User Account Control, see Comparison of privilege authorization features.
File system support in modern operating systems
Support for file systems is highly varied among modern operating systems although there are several common file systems which almost all operating systems include support and drivers for.
Mac OS X
Mac OS X supports HFS+ with journaling as its primary file system. It is derived from the Hierarchical File System of the earlier Mac OS. Mac OS X has facilities to read and write FAT, NTFS (read-only, although an open-source cross platform implementation known as NTFS 3G provides read-write support to Microsoft Windows NTFS file system for Mac OS X users), UDF, and other file systems, but cannot be installed to them. Due to its UNIX heritage Mac OS X now supports virtually all the file systems supported by the UNIX VFS..
Solaris
The Solaris Operating System (as with most operating systems based upon open standards and/or open source) uses UFS as its primary file system. Prior to 1998, Solaris UFS did not have logging/journaling capabilities, but over time the OS has gained this and other new data management capabilities.
Additional features include VERITAS (Journaling) VxFS, QFS from Sun Microsystems, enhancements to UFS including multiterabyte support and UFS volume management included as part of the OS, and ZFS (open source, pool able, 128-bit, compressible, and error-correcting).
Kernel extensions were added to Solaris to allow for bootable Veritas VxFS operation. Logging or journaling was added to UFS in Solaris 7. Releases of Solaris 10, Solaris Express, OpenSolaris, and other open source variants of Solaris later supported bootable ZFS.
Logical Volume Management allows for spanning a file system across multiple devices for the purpose of adding redundancy, capacity, and/or throughput. Solaris includes Solaris Volume Manager (formerly known as Solstice Disk Suite.) Solaris is one of many operating systems supported by VERITAS Volume Manager. Modern Solaris based operating systems eclipse the need for volume management through leveraging virtual storage pools in ZFS.
Linux
Many Linux distributions support some or all of ext2, ext3, ext4, ReiserFS, Reiser4, JFS , XFS , GFS, GFS2, OCFS, OCFS2, and NILFS. The ext file systems, namely ext2, ext3 and ext4 are based on the original Linux file system. Others have been developed by companies to meet their specific needs, hobbyists, or adapted from UNIX, Microsoft Windows, and other operating systems. Linux has full support for XFS and JFS, along with FAT (the MS-DOS file system), and HFS which is the primary file system for the Macintosh.
In recent years support for Microsoft Windows NT's NTFS file system has appeared in Linux, and is now comparable to the support available for other native UNIX file systems. ISO 9660 and Universal Disk Format (UDF) are supported which are standard file systems used on CDs, DVDs, and BluRay discs. It is possible to install Linux on the majority of these file systems. Unlike other operating systems, Linux and UNIX allow any file system to be used regardless of the media it is stored in, whether it is a hard drive, a disc (CD, DVD...), an USB key, or even contained within a file located on another file system.
Microsoft Windows
Microsoft Windows currently supports NTFS and FAT file systems, along with network file systems shared from other computers, and the ISO 9660 and UDF file systems used for CDs, DVDs, and other optical discs such as Blu-ray. Under Windows each file system is usually limited in application to certain media, for example CDs must use ISO 9660 or UDF, and as of Windows Vista, NTFS is the only file system which the operating system can be installed on. Windows Embedded CE 6.0, Windows Vista Service Pack 1, and Windows Server 2008 support ExFAT, a file system more suitable for flash drives.
Special-purpose file systems
FAT file systems are commonly found on floppy disks, flash memory cards, digital cameras, and many other portable devices because of their relative simplicity. Performance of FAT compares poorly to most other file systems as it uses overly simplistic data structures, making file operations time-consuming, and makes poor use of disk space in situations where many small files are present. ISO 9660 and Universal Disk Format are two common formats that target Compact Discs and DVDs. Mount Rainier is a newer extension to UDF supported by Linux 2.6 series and Windows Vista that facilitates rewriting to DVDs in the same fashion as has been possible with floppy disks.
Journalized file systems
File systems may provide journaling, which provides safe recovery in the event of a system crash. A journaled file system writes some information twice: first to the journal, which is a log of file system operations, then to its proper place in the ordinary file system. Journaling is handled by the file system driver, and keeps track of each operation taking place that changes the contents of the disk. In the event of a crash, the system can recover to a consistent state by replaying a portion of the journal. Many UNIX file systems provide journaling including ReiserFS, JFS, and Ext3.
In contrast, non-journaled file systems typically need to be examined in their entirety by a utility such as fsck or chkdsk for any inconsistencies after an unclean shutdown. Soft updates is an alternative to journaling that avoids the redundant writes by carefully ordering the update operations. Log-structured file systems and ZFS also differ from traditional journaled file systems in that they avoid inconsistencies by always writing new copies of the data, eschewing in-place updates.
Graphical user interfaces
Most of the modern computer systems support graphical user interfaces (GUI), and often include them. In some computer systems, such as the original implementations of Microsoft Windows and the Mac OS, the GUI is integrated into the kernel.
While technically a graphical user interface is not an operating system service, incorporating support for one into the operating system kernel can allow the GUI to be more responsive by reducing the number of context switches required for the GUI to perform its output functions. Other operating systems are modular, separating the graphics subsystem from the kernel and the Operating System. In the 1980s UNIX, VMS and many others had operating systems that were built this way. Linux and Mac OS X are also built this way. Modern releases of Microsoft Windows such as Windows Vista implement a graphics subsystem that is mostly in user-space, however versions between Windows NT 4.0 and Windows Server 2003's graphics drawing routines exist mostly in kernel space. Windows 9x had very little distinction between the interface and the kernel.
Many computer operating systems allow the user to install or create any user interface they desire. The X Window System in conjunction with GNOME or KDE is a commonly-found setup on most Unix and Unix-like (BSD, Linux, Solaris) systems. A number of Windows shell replacements have been released for Microsoft Windows, which offer alternatives to the included Windows shell, but the shell itself cannot be separated from Windows.
Numerous Unix-based GUIs have existed over time, most derived from X11. Competition among the various vendors of Unix (HP, IBM, Sun) led to much fragmentation, though an effort to standardize in the 1990s to COSE and CDE failed for the most part due to various reasons, eventually eclipsed by the widespread adoption of GNOME and KDE. Prior to open source-based toolkits and desktop environments, Motif was the prevalent toolkit/desktop combination (and was the basis upon which CDE was developed).
Graphical user interfaces evolve over time. For example, Windows has modified its user interface almost every time a new major version of Windows is released, and the Mac OS GUI changed dramatically with the introduction of Mac OS X in 1999.[7]
Examples of operating systems
Microsoft Windows (OS)
Windows 7 Ultimate Desktop
Microsoft Windows is a family of proprietary operating systems that originated as an add-on to the older MS-DOS operating system for the IBM PC. Modern versions are based on the newer Windows NT kernel that was originally intended for OS/2. Windows runs on x86, x86-64 and Itanium processors. Earlier versions also ran on the Alpha, MIPS, Fairchild (later Intergraph) Clipper and PowerPC architectures (some work was done to port it to the SPARC architecture).
As of 2009, Microsoft Windows holds a large amount of the worldwide desktop market share. Windows is also used on servers, supporting applications such as web servers and database servers. In recent years, Microsoft has spent significant marketing and research & development money to demonstrate that Windows is capable of running any enterprise application, which has resulted in consistent price/performance records (see the TPC) and significant acceptance in the enterprise market.
The most widely used version of the Microsoft Windows family is Windows XP, released on October 25, 2001.
In November 2006, after more than five years of development work, Microsoft released Windows Vista, a major new operating system version of Microsoft Windows family which contains a large number of new features and architectural changes. Chief amongst these are a new user interface and visual style called Windows Aero, a number of new security features such as User Account Control, and a few new multimedia applications such as Windows DVD Maker. A server variant based on the same kernel, Windows Server 2008, was released in early 2008.
On October 22, 2009, Microsoft released Windows 7, the successor to Windows Vista, coming three years after its release. While Vista was about introducing new features, Windows 7 aims to streamline these and provide for a faster overall working environment. Windows Server 2008 R2, the server variant, was released at the same time.
Mac OS X
Mac OS X Snow Leopard Desktop
Mac OS X is a line of partially proprietary, graphical operating systems developed, marketed, and sold by Apple Inc., the latest of which is pre-loaded on all currently shipping Macintosh computers. Mac OS X is the successor to the original Mac OS, which had been Apple's primary operating system since 1984. Unlike its predecessor, Mac OS X is a UNIX operating system built on technology that had been developed at NeXT through the second half of the 1980s and up until Apple purchased the company in early 1997.
The operating system was first released in 1999 as Mac OS X Server 1.0, with a desktop-oriented version (Mac OS X v10.0) following in March 2001. Since then, six more distinct "client" and "server" editions of Mac OS X have been released, the most recent being Mac OS X v10.6, which was first made available on August 28, 2009. Releases of Mac OS X are named after big cats; the current version of Mac OS X is nicknamed "Snow Leopard".
The server edition, Mac OS X Server, is architecturally identical to its desktop counterpart but usually runs on Apple's line of Macintosh server hardware. Mac OS X Server includes work group management and administration software tools that provide simplified access to key network services, including a mail transfer agent, a Samba server, an LDAP server, a domain name server, and others.
GNU/Linux and Unix-like operating systems
Debian is a (linux-based) unix-like system
Ken Thompson wrote B, mainly based on BCPL, which he used to write Unix, based on his experience in the MULTICS project. B was replaced by C, and Unix developed into a large, complex family of inter-related operating systems which have been influential in every modern operating system (see History). The Unix-like family is a diverse group of operating systems, with several major sub-categories including System V, BSD, and Linux. The name "UNIX" is a trademark of The Open Group which licenses it for use with any operating system that has been shown to conform to their definitions. "Unix-like" is commonly used to refer to the large set of operating systems which resemble the original Unix.
Unix-like systems run on a wide variety of machine architectures. They are used heavily for servers in business, as well as workstations in academic and engineering environments. Free Unix variants, such as GNU, Linux and BSD, are popular in these areas.
Some Unix variants like HP's HP-UX and IBM's AIX are designed to run only on that vendor's hardware. Others, such as Solaris, can run on multiple types of hardware, including x86 servers and PCs. Apple's Mac OS X, a hybrid kernel-based BSD variant derived from NeXTSTEP, Mach, and FreeBSD, has replaced Apple's earlier (non-Unix) Mac OS.
Unix interoperability was sought by establishing the POSIX standard. The POSIX standard can be applied to any operating system, although it was originally created for various Unix variants.
Google Chrome
Google Chrome OS Desktop
Google Chrome OS is an open source-operating system designed by Google to work exclusively with web applications. Announced on July 7, 2009, Chrome OS is set to have a publicly available stable release during the second half of 2010. The operating system is based on Linux and targets specifically designed hardware. The user interface takes a minimalist approach, resembling that of the Chrome web browser. Because the browser will be the only application residing on the device, Google Chrome OS is aimed at users who spend most of their computer time on the Internet. At a November 19, 2009 news conference, Sundar Pichai, the Google vice president overseeing Chrome, demonstrated an early version of the operating system, which included a desktop that closely resembled the Chrome browser, but with tabs for frequently used Web-based applications. The netbook running the operating system booted up in seven seconds, a time Google is working to improve. On the same day, Google released Chrome OS's source code under open source licensing as Chromium OS
[edit] Plan 9
Plan 9
Ken Thompson, Dennis Ritchie and Douglas McIlroy at Bell Labs designed and developed the C programming language to build the operating system Unix. Programmers at Bell Labs went on to develop Plan 9 and Inferno, which were engineered for modern distributed environments. Plan 9 was designed from the start to be a networked operating system, and had graphics built-in, unlike Unix, which added these features to the design later. Plan 9 has yet to become as popular as Unix derivatives, but it has an expanding community of developers. It is currently released under the Lucent Public License. Inferno was sold to Vita Nuova Holdings and has been released under a GPL/MIT license.
Real-time operating systems
A real-time operating system (RTOS1) is a multitasking operating system intended for applications with fixed deadlines (real-time computing). Such applications include some small embedded systems, automobile engine controllers, industrial robots, spacecraft, industrial control, and some large-scale computing systems.
An early example of a large-scale real-time operating system was Transaction Processing Facility developed by American Airlines and IBM for the Sabre Airline Reservations System.
Embedded systems that have fixed deadlines use a real-time operating system such as VxWorks, eCos, QNX, MontaVista Linux and RTLinux. Windows CE is a real-time operating system that shares similar APIs to desktop Windows but shares none of desktop Windows' codebase[citation needed].
Some embedded systems use operating systems such as Symbian OS, Palm OS, BSD, and Linux, although such operating systems do not support real-time computing.
Hobby development
Operating system development, or OSDev for short, as a hobby has a large cult-like following. As such, operating systems, such as Linux, have derived from hobby operating system projects. The design and implementation of an operating system requires skill and determination, and the term can cover anything from a basic "Hello World" boot loader to a fully featured kernel. One classical example of this is the Minix Operating System—an OS that was designed by A.S. Tanenbaum as a teaching tool but was heavily used by hobbyists before Linux eclipsed it in popularity.
Other
Older operating systems which are still used in niche markets include OS/2 from IBM and Microsoft; Mac OS, the non-Unix precursor to Apple's Mac OS X; BeOS; XTS-300. Some, most notably AmigaOS 4 and RISC OS, continue to be developed as minority platforms for enthusiast communities and specialist applications. OpenVMS formerly from DEC, is still under active development by Hewlett-Packard.
There were a number of operating systems for 8 bit computers - Apple's DOS (Disk Operating System) 3.2 & 3.3 for Apple II, ProDOS, UCSD, CP/M - available for various 8 and 16 bit environments, FutureOS for the Amstrad CPC6128 and 6128Plus. For the Commodore 8 bit computers, separate operating systems were designed for the host computers, printers, and disk drives, with the result that a complex coordination of signals (TALK/LISTEN protocol) was developed so they could work separately or in tandem, depending on the tasks at hand.
Research and development of new operating systems continues. GNU Hurd is designed to be backwards compatible with UNIX, but with enhanced functionality and microkernel architecture. Singularity is a project at Microsoft Research to develop an operating system with better memory protection based on the .Net managed code model. Systems development follows the same model used by other Software development, which involves maintainers, version control "trees", forks, "patches", and specifications. From the AT&T-Berkeley lawsuit the new unencumbered systems were based on 4.4BSD which forked as FreeBSD and NetBSD efforts to replace missing code after the Unix wars. Recent forks include Dragonfly BSD and Darwin from BSD Unix.
Diversity of operating systems and portability
Application software is generally written for use on a specific operating system, and sometimes even for specific hardware. When porting the application to run on another OS, the functionality required by that application may be implemented differently by that OS (the names of functions, meaning of arguments, etc.) requiring the application to be adapted.
This cost in supporting operating systems diversity can be avoided by instead writing applications against software platforms like Java, Qt or for web browsers. These abstractions have already borne the cost of adaptation to specific operating systems and their system libraries.
Another approach is for operating system vendors to adopt standards. For example, POSIX and OS abstraction layers provide commonalities that reduce porting costs.
Programming software
Programming software usually provides tools to assist a programmer in writing computer programs, and software using different programming languages in a more convenient way. The tools include:
§ linkers
An Integrated development environment (IDE) is a single application that attempts to manage all these functions.
Compiler
A compiler is a computer program (or set of programs) that transforms source code written in a computer language (the source language) into another computer language (the target language, often having a binary form known as object code). The most common reason for wanting to transform source code is to create an executable program.
The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a lower level language (e.g., assembly language or machine code). A program that translates from a low level language to a higher level one is a decompiler. A program that translates between high-level languages is usually called a language translator, source to source translator, or language converter. A language rewriter is usually a program that translates the form of expressions without a change of language.
A compiler is likely to perform many or all of the following operations: lexical analysis, preprocessing, parsing, semantic analysis, code generation, and code optimization.
Program faults caused by incorrect compiler behavior can be very difficult to track down and work around and compiler implementers invest a lot of time ensuring the correctness of their software.
The term compiler-compiler is sometimes used to refer to a parser generator, a tool often used to help create the lexer and parser.
Software for early computers was primarily written in assembly language for many years. Higher level programming languages were not invented until the benefits of being able to reuse software on different kinds of CPUs started to become significantly greater than the cost of writing a compiler. The very limited memory capacity of early computers also created many technical problems when implementing a compiler.
Towards the end of the 1950s, machine-independent programming languages were first proposed. Subsequently, several experimental compilers were developed. The first compiler was written by Grace Hopper, in 1952, for the A-0 programming language. The FORTRAN team led by John Backus at IBM is generally credited as having introduced the first complete compiler, in 1957. COBOL was an early language to be compiled on multiple architectures, in 1960.[1]
In many application domains the idea of using a higher level language quickly caught on. Because of the expanding functionality supported by newer programming languages and the increasing complexity of computer architectures, compilers have become more and more complex.
Early compilers were written in assembly language. The first self-hosting compiler — capable of compiling its own source code in a high-level language — was created for Lisp by Tim Hart and Mike Levin at MIT in 1962.[2] Since the 1970s it has become common practice to implement a compiler in the language it compiles, although both Pascal and C have been popular choices for implementation language. Building a self-hosting compiler is a bootstrapping problem—the first such compiler for a language must be compiled either by a compiler written in a different language, or (as in Hart and Levin's Lisp compiler) compiled by running the compiler in an interpreter.
Compilers in education
Compiler construction and compiler optimization are taught at universities and schools as part of the computer science curriculum. Such courses are usually supplemented with the implementation of a compiler for an educational programming language. A well-documented example is Nicklaus Wirth's PL/0 compiler, which Wirth used to teach compiler construction in the 1970s.[3] In spite of its simplicity, the PL/0 compiler introduced several influential concepts to the field:
- Program development by stepwise refinement (also the title of a 1971 paper by Wirth[4])
- The use of a recursive descent parser
- The use of EBNF to specify the syntax of a language
- A code generator producing portable P-code
- The use of T-diagrams[5] in the formal description of the bootstrapping problem
Compiler output
One classification of compilers is by the platform on which their generated code executes. This is known as the target platform.
A native or hosted compiler is one whose output is intended to directly run on the same type of computer and operating system that the compiler itself runs on. The output of a cross compiler is designed to run on a different platform. Cross compilers are often used when developing software for embedded systems that are not intended to support a software development environment.
The output of a compiler that produces code for a virtual machine (VM) may or may not be executed on the same platform as the compiler that produced it. For this reason such compilers are not usually classified as native or cross compilers.
Compiled versus interpreted languages
Higher-level programming languages are generally divided for convenience into compiled languages and interpreted languages. However, in practice there is rarely anything about a language that requires it to be exclusively compiled, or exclusively interpreted; although it is possible to design languages that may be inherently interpretive. The categorization usually reflects the most popular or widespread implementations of a language — for instance, BASIC are sometimes called an interpreted language and C a compiled one, despite the existence of BASIC compilers and C interpreters.
Modern trends toward just-in-time compilation and byte code interpretation at times blur the traditional categorizations of compilers and interpreters.
Some language specifications spell out that implementations must include a compilation facility; for example, Common Lisp. However, there is nothing inherent in the definition of Common Lisp that stops it from being interpreted. Other languages have features that are very easy to implement in an interpreter, but make writing a compiler much harder; for example, APL, SNOBOL4, and many scripting languages allow programs to construct arbitrary source code at runtime with regular string operations, and then execute that code by passing it to a special evaluation function. To implement these features in a compiled language, programs must usually be shipped with a runtime library that includes a version of the compiler itself.
Hardware compilation
The output of some compilers may target hardware at a very low level, for example a Field Programmable Gate Array (FPGA) or structured Application-specific integrated circuit (ASIC). Such compilers are said to be hardware compilers or synthesis tools because the programs they compile effectively control the final configuration of the hardware and how it operates; the output of the compilation are not instructions that are executed in sequence - only an interconnection of transistors or lookup tables. For example, XST is the Xilinx Synthesis Tool used for configuring FPGAs. Similar tools are available from Altera, Synplicity, Synopsys and other vendors.
Compiler design
In the early days, the approach taken to compiler design used to be directly affected by the complexity of the processing, the experience of the person(s) designing it, and the resources available.
A compiler for a relatively simple language written by one person might be a single, monolithic piece of software. When the source language is large and complex, and high quality output is required the design may be split into a number of relatively independent phases. Having separate phases means development can be parceled up into small parts and given to different people. It also becomes much easier to replace a single phase by an improved one, or to insert new phases later (e.g., additional optimizations).
The division of the compilation processes into phases was championed by the Production Quality Compiler-Compiler Project (PQCC) at Carnegie Mellon University. This project introduced the terms front end, middle end, and back end.
All but the smallest of compilers have more than two phases. However, these phases are usually regarded as being part of the front end or the back end. The point at where these two ends meet is always open to debate. The front end is generally considered to be where syntactic and semantic processing takes place, along with translation to a lower level of representation (than source code).
The middle end is usually designed to perform optimizations on a form other than the source code or machine code. This source code/machine code independence is intended to enable generic optimizations to be shared between versions of the compiler supporting different languages and target processors.
The back end takes the output from the middle. It may perform more analysis, transformations and optimizations that are for a particular computer. Then, it generates code for a particular processor and OS.
This front-end/middle/back-end approach makes it possible to combine front ends for different languages with back ends for different CPUs. Practical examples of this approach are the GNU Compiler Collection, LLVM, and the Amsterdam Compiler Kit, which have multiple front-ends, shared analysis and multiple back-ends.
One-pass versus multi-pass compilers
Classifying compilers by number of passes has its background in the hardware resource limitations of computers. Compiling involves performing lots of work and early computers did not have enough memory to contain one program that did all of this work. So compilers were split up into smaller programs which each made a pass over the source (or some representation of it) performing some of the required analysis and translations.
The ability to compile in a single pass is often seen as a benefit because it simplifies the job of writing a compiler and one pass compilers generally compile faster than multi-pass compilers. Many languages were designed so that they could be compiled in a single pass (e.g., Pascal).
In some cases the design of a language feature may require a compiler to perform more than one pass over the source. For instance, consider a declaration appearing on line 20 of the source which affects the translation of a statement appearing on line 10. In this case, the first pass needs to gather information about declarations appearing after statements that they affect, with the actual translation happening during a subsequent pass.
The disadvantage of compiling in a single pass is that it is not possible to perform many of the sophisticated optimizations needed to generate high quality code. It can be difficult to count exactly how many passes an optimizing compiler makes. For instance, different phases of optimization may analyze one expression many times but only analyze another expression once.
Splitting a compiler up into small programs is a technique used by researchers interested in producing provably correct compilers. Proving the correctness of a set of small programs often requires less effort than proving the correctness of a larger, single, equivalent program.
While the typical multi-pass compiler outputs machine code from its final pass, there are several other types:
- A "source-to-source compiler" is a type of compiler that takes a high level language as its input and outputs a high level language. For example, an automatic parallelizing compiler will frequently take in a high level language program as an input and then transform the code and annotate it with parallel code annotations (e.g. OpenMP) or language constructs (e.g. Fortran's
DOALL
statements). - Stage compiler that compiles to assembly language of a theoretical machine, like some Prolog implementations
- This Prolog machine is also known as the Warren Abstract Machine (or WAM). Byte code compilers for Java, Python, and many more are also a subtype of this.
- Just-in-time compiler, used by Smalltalk and Java systems, and also by Microsoft .NET’s Common Intermediate Language (CIL)
- Applications are delivered in byte code, which is compiled to native machine code just prior to execution.
Front end
The front end analyzes the source code to build an internal representation of the program, called the intermediate representation or IR. It also manages the symbol table, a data structure mapping each symbol in the source code to associated information such as location, type and scope. This is done over several phases, which includes some of the following:
- Line reconstruction. Languages which strop their keywords or allow arbitrary spaces within identifiers require a phase before parsing, which converts the input character sequence to a canonical form ready for the parser. The top-down, recursive-descent, table-driven parsers used in the 1960s typically read the source one character at a time and did not require a separate tokenizing phase. Atlas Auto code, and Imp (and some implementations of Algol and Coral66) are examples of stropped languages whose compilers would have a Line Reconstruction phase.
- Lexical analysis breaks the source code text into small pieces called tokens. Each token is a single atomic unit of the language, for instance a keyword, identifier or symbol name. The token syntax is typically a regular language, so a finite state automaton constructed from a regular expression can be used to recognize it. This phase is also called lexing or scanning, and the software doing lexical analysis is called a lexical analyzer or scanner.
- Preprocessing. Some languages, e.g., C, require a preprocessing phase which supports macro substitution and conditional compilation. Typically the preprocessing phase occurs before syntactic or semantic analysis; e.g. in the case of C, the preprocessor manipulates lexical tokens rather than syntactic forms. However, some languages such as Scheme support macro substitutions based on syntactic forms.
- Syntax analysis involves parsing the token sequence to identify the syntactic structure of the program. This phase typically builds a parse tree, which replaces the linear sequence of tokens with a tree structure built according to the rules of a formal grammar which define the language's syntax. The parse tree is often analyzed, augmented, and transformed by later phases in the compiler.
- Semantic analysis is the phase in which the compiler adds semantic information to the parse tree and builds the symbol table. This phase performs semantic checks such as type checking (checking for type errors), or object binding (associating variable and function references with their definitions), or definite assignment (requiring all local variables to be initialized before use), rejecting incorrect programs or issuing warnings. Semantic analysis usually requires a complete parse tree, meaning that this phase logically follows the parsing phase, and logically precedes the code generation phase, though it is often possible to fold multiple phases into one pass over the code in a compiler implementation.
Back end
The term back end is sometimes confused with code generator because of the overlapped functionality of generating assembly code. Some literature uses middle end to distinguish the generic analysis and optimization phases in the back end from the machine-dependent code generators.
The main phases of the back end include the following:
- Analysis: This is the gathering of program information from the intermediate representation derived from the input. Typical analyses are data flow analysis to build use-define chains, dependence analysis, alias analysis, pointer analysis, escape analysis etc. Accurate analysis is the basis for any compiler optimization. The call graph and control flow graph are usually also built during the analysis phase.
- Optimization: the intermediate language representation is transformed into functionally equivalent but faster (or smaller) forms. Popular optimizations are inline expansion, dead code elimination, constant propagation, loop transformation, register allocation or even automatic parallelization.
- Code generation: the transformed intermediate language is translated into the output language, usually the native machine language of the system. This involves resource and storage decisions, such as deciding which variables to fit into registers and memory and the selection and scheduling of appropriate machine instructions along with their associated addressing modes (see also Sethi-Ullman algorithm).
Compiler analysis is the prerequisite for any compiler optimization, and they tightly work together. For example, dependence analysis is crucial for loop transformation.
In addition, the scope of compiler analysis and optimizations vary greatly, from as small as a basic block to the procedure/function level, or even over the whole program (interprocedural optimization). Obviously, a compiler can potentially do a better job using a broader view. But that broad view is not free: large scope analysis and optimizations are very costly in terms of compilation time and memory space; this is especially true for interprocedural analysis and optimizations.
Interprocedural analysis and optimizations are common in modern commercial compilers from HP, IBM, SGI, Intel, Microsoft, and Sun Microsystems. The open source GCC was criticized for a long time for lacking powerful interprocedural optimizations, but it is changing in this respect. Another open source compiler with full analysis and optimization infrastructure is Open64, which is used by many organizations for research and commercial purposes.
Due to the extra time and space needed for compiler analysis and optimizations, some compilers skip them by default. Users have to use compilation options to explicitly tell the compiler which optimizations should be enabled.
Related techniques
Assembly language is not a high-level language and a program that compiles it is more commonly known as an assembler, with the inverse program known as a disassembler.
A program that translates from a low level language to a higher level one is a decompiler.
A program that translates between high-level languages is usually called a language translator, source to source translator, language converter, or language rewriter. The last term is usually applied to translations that do not involve a change of language.
International conferences and organizations
Every year, the European Joint Conferences on Theory and Practice of Software (ETAPS) sponsors the International Conference on Compiler Construction (CC), with papers from both the academic and industrial sectors.
Application software
Application software is computer software designed to help the user perform a particular task. Such programs are also called software applications, applications or apps. Typical examples are word processors, spreadsheets, media players and database applications.
Application software should be contrasted with system software (infrastructure) or middleware (computer services/ processes integrators), which is involved in integrating a computer's various capabilities, but typically does not directly apply them in the performance of tasks that benefit the user. A simple, if imperfect analogy in the world of hardware would be the relationship of an electric light bulb (an application) to an electric power generation plant (a system). The power plant merely generates electricity, not itself of any real use until harnessed to an application like the electric light that performs a service that benefits the user.
Terminology
In computer science, an application is a computer program designed to help people perform a certain type of work. An application thus differs from an operating system (which runs a computer), a utility (which performs maintenance or general-purpose chores), and a programming language (with which computer programs are created). Depending on the work for which it was designed, an application can manipulate text, numbers, graphics, or a combination of these elements. Some application packages offer considerable computing power by focusing on a single task, such as word processing; others, called integrated software, offer somewhat less power but include several applications.[1]
User-written software tailors systems to meet the user's specific needs. User-written software includes spreadsheet templates, word processor macros, scientific simulations, graphics and animation scripts. Even email filters are a kind of user software. Users create this software themselves and often overlook how important it is.
The delineation between system software such as operating systems and application software is not exact, however, and is occasionally the object of controversy. For example, one of the key questions in the United States v. Microsoft antitrust trial was whether Microsoft's Internet Explorer web browser was part of its Windows operating system or a separable piece of application software. As another example, the GNU/Linux naming controversy is, in part, due to disagreement about the relationship between the Linux kernel and the operating systems built over this kernel. In some types of embedded systems, the application software and the operating system software may be indistinguishable to the user, as in the case of software used to control a VCR, DVD player or microwave oven.
The above definitions may exclude some applications that may exist on some computers in large organizations. For an alternative definition of an application: see Application Portfolio Management.
Application software classification
There are many types of application software:
§ An application suite consists of multiple applications bundled together. They usually have related functions, features and user interfaces, and may be able to interact with each other, e.g. open each other's files. Business applications often come in suites, e.g. Microsoft Office, OpenOffice.org, and work, which bundle together a word processor, a spreadsheet, etc.; but suites exist for other purposes, e.g. graphics or music.
§ Enterprise software addresses the needs of organization processes and data flow, often in a large distributed environment. (Examples include Financial, Customer Relationship Management, and Supply Chain Management). Note that Departmental Software is a sub-type of Enterprise Software with a focus on smaller organizations or groups within a large organization. (Examples include Travel Expense Management, and IT Helpdesk)
§ Enterprise infrastructure software provides common capabilities needed to support Enterprise Software systems. (Examples include Databases, Email servers, and Network and Security Management)
§ Information worker software addresses the needs of individuals to create and manage information, often for individual projects within a department, in contrast to enterprise management. Examples include time management, resource management, documentation tools, analytical, and collaborative. Word processors, spreadsheets, email and blog clients, personal information system, and individual media editors may aid in multiple information worker tasks.
§ Content access software is software used primarily to access content without editing, but may include software that allows for content editing. Such software addresses the needs of individuals and groups to consume digital entertainment and published digital content. (Examples include Media Players, Web Browsers, Help browsers, and Games)
§ Educational software is related to content access software, but has the content and/or features adapted for use in by educators or students. For example, it may deliver evaluations (tests), track progress through material, or include collaborative capabilities.
§ Simulation software is computer software for simulation of physical or abstract systems for research, training or entertainment purposes.
§ Media development software addresses the needs of individuals who generate print and electronic media for others to consume, most often in a commercial or educational setting. This includes Graphic Art software, Desktop Publishing software, Multimedia Development software, HTML editors, Digital Animation editors, Digital Audio and Video composition, and many others.
§ Product engineering software is used in developing hardware and software products. This includes computer aided design (CAD), computer aided engineering (CAE), computer language editing and compiling tools, Integrated Development Environments, and Application Programmer Interfaces.
Application software allows end users to accomplish one or more specific (not directly computer development related) tasks. Typical applications include:
§ quantum chemistry and solid state physics software
§ telecommunications (i.e., the internet and everything that flows on it)
Application software exists for and has impacted a wide variety of topics.
Software topics
Architecture
Users often see things differently than programmers. People who use modern general purpose computers (as opposed to embedded systems, analog computers and supercomputers) usually see three layers of software performing a variety of tasks: platform, application, and user software.
§ Platform software: Platform includes the firmware, device drivers, an operating system, and typically a graphical user interface which, in total, allow a user to interact with the computer and its peripherals (associated equipment). Platform software often comes bundled with the computer. On a PC you will usually have the ability to change the platform software.
§ Application software: Application software or Applications are what most people think of when they think of software. Typical examples include office suites and video games. Application software is often purchased separately from computer hardware. Sometimes applications are bundled with the computer, but that does not change the fact that they run as independent applications. Applications are usually independent programs from the operating system, though they are often tailored for specific platforms. Most users think of compilers, databases, and other "system software" as applications.
§ User-written software: End-user development tailors systems to meet users' specific needs. User software include spreadsheet templates, word processor [Platform software: Platform includes the firmware, device drivers, an operating system, and typically a graphical user interface which, in total, allow a user to interact with the computer and its peripherals (associated equipment). Platform software often comes bundled with the computer. On a PC you will usually have the ability to change the platform software. Even email filters are a kind of user software. Users create this software themselves and often overlook how important it is. Depending on how competently the user-written software has been integrated into default application packages, many users may not be aware of the distinction between the original packages, and what has been added by co-workers.
Documentation
Most software has software documentation so that the end user can understand the program, what it does, and how to use it. Without a clear documentation, software can be hard to use—especially if it is very specialized and relatively complex software like the Photoshop or AutoCAD.
Developer documentation may also exist, either with the code as comments and/or as separate files, detailing how the programs works and can be modified.
Library
An executable is almost always not sufficiently complete for direct execution. Software libraries include collections of functions and functionality that may be embedded in other applications. Operating systems include many standard Software libraries, and applications are often distributed with their own libraries.File:Software.jpg
Standard
Since software can be designed using many different programming languages and in many different operating systems and operating environments, software standard is needed so that different software can understand and exchange information between each other. For instance, an email sent from a Microsoft Outlook should be readable from Yahoo! Mail and vice versa.
Execution
Computer software has to be "loaded" into the computer's storage (such as a [hard drive], memory, or RAM). Once the software has loaded, the computer is able to execute the software. This involves passing instructions from the application software, through the system software, to the hardware which ultimately receives the instruction as machine code. Each instruction causes the computer to carry out an operation – moving data, carrying out a computation, or altering the control flow of instructions.
Data movement is typically from one place in memory to another. Sometimes it involves moving data between memory and registers which enable high-speed data access in the CPU. Moving data, especially large amounts of it, can be costly. So, this is sometimes avoided by using "pointers" to data instead. Computations include simple operations such as incrementing the value of a variable data element. More complex computations may involve many operations and data elements together.
Quality and reliability
Software quality is very important, especially for commercial and system software like Microsoft Office, Microsoft Windows and Linux. If software is faulty (buggy), it can delete a person's work, crash the computer and do other unexpected things. Faults and errors are called "bugs." Many bugs are discovered and eliminated (debugged) through software testing. However, software testing rarely – if ever – eliminates every bug; some programmers say that "every program has at least one more bug" (Lubarsky's Law). All major software companies, such as Microsoft, Novell and Sun Microsystems, have their own software testing departments with the specific goal of just testing. Software can be tested through unit testing, regression testing and other methods, which are done manually, or most commonly, automatically, since the amount of code to be tested can be quite large. For instance, NASA has extremely rigorous software testing procedures for many operating systems and communication functions. Many NASA based operations interact and identify each other through command programs called software. This enables many people who work at NASA to check and evaluate functional systems overall. Programs containing command software enable hardware engineering and system operations to function much easier together.
License
The software's license gives the user the right to use the software in the licensed environment. Some software comes with the license when purchased off the shelf, or an OEM license when bundled with hardware. Other software comes with a free software license, granting the recipient the rights to modify and redistribute the software. Software can also be in the form of freeware or shareware.
Patents
Software can be patented; however, software patents can be controversial in the software industry with many people holding different views about it. The controversy over software patents is that a specific algorithm or technique that the software has may not be duplicated by others and is considered an intellectual property and copyright infringement depending on the severity. Some people believe that software patent hinder software development, while others argue that software patents provide an important incentive to spur software innovation.
Design and implementation
Design and implementation of software varies depending on the complexity of the software. For instance, design and creation of Microsoft Word software will take much longer time than designing and developing Microsoft Notepad because of the difference in functionalities in each one.
Software is usually designed and created (coded/written/programmed) in integrated development environments (IDE) like Eclipse, Emacs and Microsoft Visual Studio that can simplify the process and compile the program. As noted in different section, software is usually created on top of existing software and the application programming interface (API) that the underlying software provides like GTK+, JavaBeans or Swing. Libraries (APIs) are categorized for different purposes. For instance, JavaBeans library is used for designing enterprise applications, Windows Forms library is used for designing graphical user interface (GUI) applications like Microsoft Word, and Windows Communication Foundation is used for designing web services. Underlying computer programming concepts like quick sort, hash table, array, and binary tree can be useful to creating software. When a program is designed, it relies on the API. For instance, if a user is designing a Microsoft Windows desktop application, he/she might use the .NET Windows Forms library to design the desktop application and call its APIs likeForm1.Close() and Form1.Show()[5] to close or open the application and write the additional operations him/herself that it need to have. Without these APIs, the programmer needs to write these APIs him/herself. Companies like Sun Microsystems, Novell, and Microsoft provide their own APIs so that many applications are written using their software libraries that usually have numerous APIs in them.
Software has special economic characteristics that make its design, creation, and distribution different from most other economic goods. A person who creates software is called a programmer, software engineer, software developer, or code monkey, terms that all essentially have a same meaning.
Industry and organizations
Software has its own niche industry that is called the software industry made up of different entities and peoples that produce software, and as a result there are many software companies and programmers in the world. Because software is increasingly used in many different areas like in finance, searching, mathematics, space exploration, gaming and mining and such, software companies and people usually specialize in certain areas. For instance, Electronic Arts primarily creates video games.
Also selling software can be quite a profitable industry. For instance, Bill Gates, the founder of Microsoft is the second richest man in the world in 2008 largely by selling the Microsoft Windows and Microsoft Office software programs. The same goes for Larry Ellison, largely through his Oracle database software.
There are also many non-profit software organizations like the Free Software Foundation, GNU Project, and Mozilla Foundation. Also there are many software standard organizations like theW3C, IETF and others that try to come up with a software standard so that many software can work and interoperate with each other like through standards such as XML, HTML, HTTP or FTP.
Some of the well known software companies include Microsoft, Oracle, Novell, SAP, Symantec, Adobe Systems, and Corel.
Comments
Post a Comment